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Introduction
Ø Medication dosing is error prone

• Complicated situations (e.g., intensive care)
• Accidental human errors

Ø Preventable Adverse Event (PAE)
• A lower limit of 210,000 premature deaths associated with PAEs per y

ear in the United States [1]. 
• The number of severe harm cases are even as many as 10 to 20 time

s of these fatal harm cases.

[1] James JT. A new, evidence-based estimate of patient harms associated with hospital care. Journal of patient safety. 2013 Sep 1;9(3):122-8.
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An Example of Medication Dosing
Ø Heparin: An anticoagulant with sensitive therapeutic windows

• Misdosing heparin can place patients at unnecessary risk and  increase length of hospital stay
Ø aPTT: Activated Partial thromboplastin time (units of seconds)

• Therapeutic range [60 100]
Ø éHeparin, éaPTT, Longer time to form clots
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Figure. Generic Sequential Decision Making in 
medicine
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Problem and the Proposed Solution

Ø Utilize the framework of reinforcement learning in continuous state
-action spaces to learn a better policy for heparin dosing from obs
ervational data.

Ø Statistically assess if the learned policy is in fact better than the exi
sting hospital protocols.
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Figure. The distribution of our MIMIC II cohort’s aPTT
measures over a 48 hours period.
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Brief Introduction to Reinforcement Learning

Figure. Generic Sequential Decision Making in 
medicine

§ State (st)
§ Action (at)
§ Reward/Reinforcement (rt)
§ Policy (π: st ->at ) 
Objective: Find an optimal policy that maximi
zes the expected (discounted) total reward

§ Optimal state-action value function:

Q*(s,a) =max
π
E[rt +γrt+1 +γ

2rt+2 +! | st = s,at = a,π ]
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Ø Value based algorithms (Q-l
earning, SARSA, etc.)
discrete action domain 

Ø Policy based algorithm (Reinfor
ce, Actor-Critique, etc.)
continuous action domain 

Brief Introduction to Reinforcement Learning
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Data preprocessing
Ø Heparin problem setting 

• Actions (heparin dosing) occur in continuous domain.
• Heparin dose can be changed every hour.
• Monitoring with activated partial thromboplastin time (aPTT).
• aPTT is measured sparsely (e.g. every 4 hours) à delayed reward
• Our agent takes the reward and the features (or state) at each hour an

d determines the dosing for the next hour.
• It behaves like a “aPTT GPS” à only makes recommendations

Ø Data used in this project 
• MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care- II) da

tabase.
• Emory Hospital Intensive Care Unit clinical data.
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Data preprocessing
Ø MIMIC-II database description

• 25,328 ICU stays between 2001 and 2007.
• Collected from Beth Israel Deaconess Medical Center in Boston by MIT l

ab.
• 4470 patients with Heparin.
• 2598 patients with complete Heparin information. 

Ø Emory ICU data description
• Over 30,000 ICU stays between 2013 and 2015.
• Collected from Emory University Hospital in Atlanta.
• ICD-9 codes are extracted to provide extra information.  
• 2310 patients with complete Heparin information (no less than 8 hours an

d no more than 20 days). 
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Ø Emory ICU data results: example of dosing

Figure. Results on normal heparin level

Results and evaluation
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Ø Emory ICU data results: example of dosing

Figure. Results on abnormal heparin level

Results and evaluation

distance from 
RL policy
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Results and evaluation
Ø Emory ICU data evaluations

distance -2

distance -1

distance 0

distance 1

distance 2

Is deviation from optimal RL policy associated with adverse outcomes?
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Association with Average Reward
Ø Emory ICU data evaluations

In the Emory ICU data, It can be seen from figure that the distance 0 clas
s achieved the highest reward. The reward will decrease with the increas
e of absolute distance. 
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Ø Emory ICU data evaluations

• We extract the history of clotting complication (hi_clot) and bleeding com
plication (hi_blood) from daily ICD-codes of patients. 

• Only the distance has significant p-value. 
• It is negatively associated with rewards. In other words, the closer a dosi

ng compared with the recommendation, the higher reward it will achieve. 

Association with Average Reward
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Ø Emory ICU data evaluations

Association with Clotting Complications
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Ø Emory ICU data evaluations

• Distance is the only significant variable with p-value smaller than 0.05. 
• With the increase of distance between recommendation and clinicians 

dosing, the patient might not received enough heparin dosing. As a con
sequence, the probability of clotting complication will be higher. 

Association with Clotting Complications
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Ø Emory ICU data evaluations

Association with Bleeding Complications
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Ø Emory ICU data evaluations

• The first significant variable is distance. A decrease of distance is asso
ciated with an increase of bleeding probability. 

• The second variable is the coagulation SOFA scores. Low platelets co
unts results in a high SOFA score.

Association with Bleeding Complications



A DDPG Approach to Medication Dosing and Surveillance in the ICU
18

Conclusions
Ø Results and Evaluation

• We showed that an RL agent can learn reasonable medicatio
n dosing policies from observational data (two separate datas
ets)

• After adjusting for confounding factors, deviation from RL pol
icy is associated with adverse outcomes

Ø Limitation on Learning Ability
• Some useful strategies are not learned by the RL agent, such 

as rapid turning off of Heparin drip

Ø Ongoing work
• Interpretability, via relevance score/relevance propagation
• Clinical Implementation and prospective validation
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Thank you!
Questions?
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Ø Stochastic policy gradient 

Classic stochastic policy gradient will consider objective function 
𝐽(𝜃) for state density 𝜌& (𝑠) as follows: 

The gradient can be calculated by the policy gradient theorem:

Brief Introduction to Reinforcement Learning
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Experiments
Ø Proposed framework ( clinician-in-the-loop )

Critic
Value network

Actor
Policy network Clinicians

Environment	State

Executed
dosing

Reward

Predicted
dosing

RL agent

TD error

1. Instead of generating new 
episode by interacting with 
environment, the feasible w
ay to implement RL algorith
m is analyzing real episode 
from retrospective clinical d
ata. 

2. In the sequential decision 
making process, the agent 
will predict a action accordi
ng to the current state, but  
the executed action is deter
mined by clinicians. 
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Introduction
Ø Actor-Critic architecture

Based on the fundamental theorem, the actor-critic architecture is 
widely used to represent the components inside policy gradient. 

Actor: adjust parameter of policy

Critic: estimate action-value

The policy gradient update will be:
CriticActor

Value

State

Hidden Actor

Value

Hidden Critic

Action

State

Action


