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Background

• Two types of regularizations for neural networks:

• Relational regularization is very important to neural representation and 
generalization.

• Hyperspherical Uniformality, the angular diversity of neurons on 
hyperspheres, proves helpful.

E.g. Weight Decay E.g. Orthogonality
Hyperspherical Uniformity



Minimum Hyperspherical Energy

• Constructing repulsion forces between any pair of weight vectors (in 
every layer)

• It connects to Thomson problem - to find a minimal energy 
configuration of electrons (with the existence of Coulomb’s law) on 
the surface of an atom.

Liu, Lin, Liu, Liu, Yu, Dai, Song. Learning towards Minimum Hyperspherical Energy, NeurIPS 2018



Minimum Hyperspherical Energy

• The objective is formulated as

Normalized L2 distance 
or angular distance

Riesz s-kernel

Serve as repulsion forces



Our work aims to answer the following questions

• What is the connection between hyperspherical uniformity and 
orthogonality?

• Is there any other way to achieve hyperspherical uniformity?

• Is there a unified view on hyperspherical uniformity?



Connection between Hyperspherical Uniformity and 
Orthogonality

• An Intriguing Example
• Promoting orthogonality of the following 
d+1 vectors:

• Promoting hyperspherical uniformity for 
the following 2d+2 vectors:

• They are equivalent. 

Cross-polytope



Variant: Maximum Hyperspherical Separation

• Inspired by Tammes problem where one packs a given number of 
circles on the surface of a sphere such that the minimum distance 
between circles is maximized

• Achieving hyperspherical uniformity from a local perspective

Normalized Euclidean distance or angular distance



Variant: Maximum Hyperspherical Polarization

• MHP maximizes the following s-polarization:

• It is a max-min problem and amounts to identifying the optimal 
location of “poles” for the potential function

Riesz s-kernel



Variant: Minimum Hyperspherical Covering

• MHC minimizes the following covering radius:

• The covering radius α denotes the maximum geodesic distance from a 
point v to the nearest point in W. 

• It can be viewed as the geodesic radius of the largest hyperspherical 
cap that contains no points on the hypersphere

Normalized L2 distance or angular distance



Variant: Maximum Gram Determinant

• MGD maximizes the following kernel Gram determinant:

• It is inspired by numerical integration and interpolation and also known 
as extremal systems in numerical integration.

• Geometrically, the kernel Gram determinant is also closely related to n-
dimensional volume of the parallelotope formed bt W.

Gaussian Kernel



Theoretical Properties (informal)

• All these regularizations are asymptotically approaching to uniform 
spherical measure (uniform distribution on hypersphere).

• All these regularizations are highly connected. For example, MHS is a 
special case of MHE when s goes to infinity.

• Hyperspherical uniformity yields constrained spectral property.

• Statistical uniformity testing on hypersphere can serve as a unified 
framework to understand the proposed regularizations.

• MHP and MHC are inherently difficult to optimize due to the max-min 
(min-max) formulation.



Regularization Effects (3D visualization)



Regularization Effects (Objective Value)



Discriminative Learning

CNN on CIFAR-100 CNN on CIFAR-100

Graph Convolution Networks Point Cloud Networks 



Generative Modeling

• Regularizing GAN on CIFAR-10


