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Motivation

Filters learned in convolutional neural networks are usually highly redundant.
o Visualization of Conv1 filters from AlexNet
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o We can observe that these filters are highly redundant and correlated.
o Is there a good regularization to prevent the filters to be redundant?
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Intuition
» Toavoid the redundancy, we need to first define a way to characterize diversity. The
most straightforward way is to use orthogonality.

o However, orthogonality may still result in redundancy when the filter dimension is
smaller than the number of filters.

o To better characterize diversity, we propose the hyperspherical diversity which
can effectively reduce the redundancy and improve the network generalization.
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Learning towards Minimum Hyperspherical Energy (MHE)

Hyperspherical Energy is defined to characterize the diversity on a hypersphere.

o We first define the hyperspherical energy functional for N neurons with (d-+1)-
dimension Wy ={w,,--- ,wy €R1} as
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o where f.(-) isa decreasing real-valued function, and w:= ., is the i-th
neuron weight projected onto the unit hypersphere.

» Inthis paper, we use as Riesz s-kernel:
fs(z) =27%5>0
fo(z)=log(z71)

o Infact, minimizing £0 can also be viewed as a relaxation of minimizing £s for s>0.
(See our paper for more details.)
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Variants of MHE

MHE beyond Euclidean Distance

o The hyperspherical energy is originally defined based on the Euclidean distance on a
hypersphere, which can be viewed as an anqular measure.

» Inaddition to Euclidean distance, we consider the geodesic distance (i.e., angle) on
a unit hypersphere as a distance measure for neurons.

D it arccos(w; w;)"*%, s> 0

E? j(a;|iy) Z Z f's arccos(w; wj)):{ Zz#log(arccos('w w;)" "), s=0

=1 j=1,77#1

MHE in Half Space
o To avoid the collinear redundancy, we propose the half-space MHE.
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Understanding MHE from decoupled view

o Inspired by decoupled networks iiuetal. becoupled Networks, cvpr 20181, We can view the original
convolution as the multiplication of the angular function g and the magnitude
function h:

flw,z) = h([|w]], |z|) - 9(0)
= ([lwll - [l=] ) - (cos(8))

o By combining MHE to a standard neural networks (e.g., CNNs), the entire
reqularization term becomes
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Weight decay: regulari gth magnitude of kernels MHE: regulari gth e direction of kernels

o Fromthe decoupled view, we can see that MHE is actually very meaningful in
reqularizing the neural networks, and it also serves as a complementary role to
weight decay.
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o Variants of MHE.

Ablation Study |

CIFAR-10 CIFAR-100
Method s=2 | s=1 | s=0 s=2 I s=1 | s=0
MHE 6.22 6.74 6.44 27.15 27.09 26.16
Half-space MHE 6.28 6.54 6.30 25.61 26.30 26.18
A-MHE 6.21 6.77 6.45 26.17 27.31 27.90
Half-space A-MHE 6.52 6.49 6.44 26.03 26.52 26.47
Baseline 7.75 28.13

Table 1: Testing error (%) of different MHE on CIFAR-10/100.

o Network width.

| Method | 16/32/64 | 32/64/128 | 64/128/256 | 128/256/512 | 256/512/1024 |
Baseline 47.72 38.64 28.13 24.95 2545
MHE 36.84 30.05 26.75 24.05 23.14
Half-space MHE | 35.16 29.33 25.96 23.38 21.83

Table 2: Testing error (%) of different width on CIFAR-100.

o Network depth.

| Method | CNN-6 | CNN-9 | CNN-15 |
Baseline 32.08 28.13 N/C
MHE 28.16 26.75 26.9
Half-space MHE 27.56 25.96 25.84

Table 3: Testing error (%) of different
depth on CIFAR-100. N/C: not converged.
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o MHE for reqularizing hidden layers (H), output layers (0), or both.

Ablation Study I

H O H O H O

Method X v/ V X vV

MHE 26.85 26.55 26.16

Half-space MHE N/A 26.28 25.61

A-MHE 278 26.56 26.17

Half-space A-MHE N/A 26.64 26.03
Baseline 28.13

Table 4: Ablation study on CIFAR-100.

o Hyperparameter experiment. It shows that MHE is not sensitive to the
selection of hyperparameters.
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MHE for Image Classification
o ResNet-32 with MHE for CIFAR-10 and CIFAR-100

| Method | CIFAR-10 | CIFAR-100 |
ResNet-110-original [15] 6.61 25.16
ResNet-1001 [16] 4.92 22,71
ResNet-1001 (64 batch) [16] 4.64 -
baseline 5.19 22.87
MHE 4.72 22.19
Half-space MHE 4.66 22.04

Table 5: Error (%) of ResNet-32.

o Large-scale Object Recognition on ImageNet-2012

| Method | ResNet-18 | ResNet-34 |
baseline 33.95 30.04
Orthogonal [37] 33.65 29.74
Orthnormal 33.61 29.75
MHE 33.50 29.60
Half-space MHE 33.45 29.50

Table 6: Topl error (%) on ImageNet.

We can observe that MHE and half-space MHE can consistently improve the
classification accuracy by a significant margin.
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MHE for Class-imbalance Learning

o MHE can alleviate the class-imbalance problem, and therefore improve the accuracy
on class-imbalance learning.

o 2D feature visualization on MNIST

i

(a) CNN without MHE (b) CNN with MHE

We can observe that (NN w/ MHE can learn reasonable feature distribution even if the
training dataset is highly imbalanced, while (NN w/o MHE can not.
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MHE for Face Recognition

o We apply MHE to the loss function ofSphereface [Liu et al. SphereFace: Deep Hypersphere Embedding

for Face Recognition, CVPR 20171, and propose SphereFace+ with the following loss function:
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MHE: promoting inter-class separability

» Performance comparison to the state-of-the-art

| Method | LFW | MegaFace |
Softmax Loss 97.88 54.86
Softmax+Contrastive [46] 08.78 65.22
Triplet Loss [41] 98.70 64.80
L-Softmax Loss [30] 99.10 67.13
Softmax+Center Loss [55] 99.05 65.49
CosineFace [53, 51] 99.10 75.10
SphereFace 99.42 72.72
SphereFace+ (ours) 99.47 73.03
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Improving GANs with MHE

o Combining MHE to the discriminator of GANs can significantly improve the
generation quality:

| Method | Inception score |

Real data 11.24+.12

Weight clipping 6.41+.11
GAN-gradient penalty (GP) 6.93+.08
WGAN-GP [9] 6.68+.06
Batch Normalization [21] 6.27+.10
Layer Normalization [2] 7.19+.12
Weight Normalization [40] 6.84+.07
Orthonormal [4] 7.40+.12
SN-GANSs [35] 7.424.08
MHE (ours) 7.324.10

MHE + SN [35] (ours) 7.59+.08

Table 14: Inception scores with unsupervised 1mage generation on CIFAR-10.
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Thank you!
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